FORWAÇÃO ARDUÍNO 14 E 21 DE MAIO DE 2016

Introdução aos microcontroladores, plataforma Arduíno, módulos mais comuns, aplicações no radioamadorismo

Nota: Programa preliminar passível de alterações

RECURSOS

- A disponibilizar pelos formandos
 - Computador portátil
 - Multímetro (opcional, só se possuir)
 - Kit de ferramentas pequenas
 - Alicate de pontas, Alicate de corte, X-ato ou navalha
 Em alternativa
 - Corta-unhas, Pinça (para corte e aplicação de fios ligadores)
- A disponibilizar pela organização
 - Kit com microcontrolador, placa de desenvolvimento, componentes e módulos a usar na formação
 - Custo
 - 15eur para associados com as quotas em dia e colaboradores da Fertagus
 - 20eur para os restantes

14 DE MAIO (MANHA)

- Introdução aos MCU
- Blocos constituintes típicos (exemplos ATMEGA328P)
- O que é o Arduíno?
- Placas Arduíno mais comuns (oficiais)
 - Características base
 - UNO, NANO, MEGA, DUE, Leonardo
- Placas extra compatíveis com o IDE
 - Características base
 - ESP, Tiny85, STM
- Módulos auxiliares
 - RTC, Sonar, DHT, DS18, SDCard, USB/Série, RS485, RFM, OOK, BT, LDR, LDO, SPS, BMP, LLConv, Laser, RGB LED, BBPower, MOTDrive

14 DE MAIO (TARDE)

BOLLIO SALARIAN OR SALARIAN OR

- O ambiente de desenvolvimento (IDE)
 - Seleção de MCU
 - Exemplos
 - Bibliotecas
 - Monitorização série
- Laboratório 1
 - Exemplo Blink
 - Blink com biblioteca LED
 - I/O básico
 - Saídas digitais, Entradas digitais, Entradas analógicas, Saídas analógicas (PWM)

21 DE MAIO (MANHA)

ARLA COLLINO SALAR COLLINO SAL

- Comunicação estruturada com componentes
 - I2C, SPI, 1Wire, Série Assíncrono
 - Uso de Bit-Bang
- Expansores de I/O
 - SPI e I2C
 - Demonstração do uso de analisador lógico
- Laboratório 2
 - Uso do módulo DHT
 - Uso do módulo LCD

21 DE MAIO (TARDE)

- Laboratório 3
 - Uso do módulo de conversão de níveis lógicos
 - Uso do módulo RFM
 - RFChat

- Combinação de todo o hardware na baliza QRPP
 - RFM como transmissor
 - DHT obtém temperatura e humidade
 - Recolha da tensão de alimentação e do RFM
 - LCD mostra caracter em emissão (CW)

COMPONENTES DO KIT

- Placa de desenvolvimento (breadboard) MB-102
- Placa Arduíno Nano 3.0 (compatível)
- Conversor de níveis lógicos
- Sensor DHT11
- Display LCD 1602 com adaptador I2C
- LEDs coloridos
- Resistências de 390Ω
- Resistências de 4,7kΩ
- Cabo USB para Mini-USB
- Ligadores M-F (Dupont)
- Módulo RFM69CW em adaptador DIL
- Grupo de fios de cobre coloridos para ligações em breadboard