Solar activity was very low. No flares were observed. The visible disk was spotless.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels throughout the period.

Geomagnetic field activity was at mostly quiet levels throughout the summary period. ACE solar wind observations showed frequent minor variations in the interplanetary magnetic field (IMF). IMF Bz varied in the + 5 to -5 nT range while IMF Bt ranged from 1 - 5 nT. Solar wind velocities ranged from 249 - 441 km/sec during the period.

Space Weather Outlook 08 April - 04 May 2009

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to increase to high levels during 10-14 April. Normal flux levels are expected during the rest of the period.

Geomagnetic field activity is expected to be at mostly quiet levels through 08 April. Activity is expected to increase to unsettled to active levels during 09 - 10 April due to a recurrent coronal hole high-speed stream. Activity is expected to decrease to quiet levels during 11 - 19 April. Activity is expected to increase to quiet to unsettled levels during 21 - 22 April. Activity is expected to decrease to mostly quiet levels during 23 April - 04 May.

				Duny So		uu						
	Radio	Sun	Sunspot	X-ray	_			Flares				
	Flux	spot	Area	Background	X	-ray F	lux		0	ptical		
Date	10.7 cm	No.	<u>(10⁻⁶ hemi.</u>)	С	М	Х	S	1	2	3	4
30 March	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
31 March	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
01 April	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
02 April	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
03 April	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
04 April	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
05 April	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Solar Data

Daily	Particle	Data
-------	-----------------	------

Pro	ton Fluence		Electron Fluence
(proto	ns/cm ² -day-sr))	(electrons/cm ² -day-sr)
>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
5.1e+05	1.9e+04	4.3e+03	5.1e+06
5.5e+05	1.9e+04	4.5e+03	4.9e+06
7.7e+05	2.0e+04	4.6e+03	5.5e+06
5.9e+05	2.0e+04	4.5e+03	3.2e+06
5.1e+05	2.0e+04	4.6e+03	2.7e+06
7.5e+05	2.0e+04	4.5e+03	2.9e+06
4.7e+05	2.0e+04	4.4e+03	1.4e+06
	Pro (protor) >1 MeV 5.1e+05 5.5e+05 7.7e+05 5.9e+05 5.1e+05 7.5e+05 4.7e+05	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c } \hline Proton Fluence & (protons/cm ^2-day-sr) \\ \hline \hline $>1 \ MeV $>10 \ MeV $>100 \ MeV $>100 \ MeV $\\ \hline $>100 \ MeV $>100 \ MeV $>100 \ MeV $\\ \hline $$$100 \ MeV $\\ \hline $$$100 \ MeV $\\ \hline $$$$100 \ MeV $\\ \hline $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Daily Geomagnetic Data

	Middle Latitude			High Latitude		Estimated
	Fredericksburg			College]	Planetary
Date	Α	K-indices	А	K-indices	Α	K-indices
30 March	3	1-2-0-1-2-1-1-0	2	1-0-0-0-1-1-1-0	4	1-1-0-0-2-1-1-1
31 March	2	0-0-1-0-1-0-1-1	2	1-0-0-0-3-0-0-0	4	0-0-1-0-2-2-2-1
01 April	3	1-0-0-1-1-0-2-2	2	0-0-0-2-1-0-0-1	4	1-0-0-1-1-2-2-2
02 April	0	0-0-0-0-1-0-0-0	1	0-0-1-1-0-0-0-0	3	1-0-0-0-1-1-1-2
03 April	2	0-0-1-0-1-1-0-1	0	0-0-0-0-0-0-0-0	2	0-0-0-1-1-1-1
04 April	0	0-0-0-0-1-0-0	0	0-0-0-0-1-0-0-0	2	0-0-0-0-1-0-1
05 April	3	1-1-1-1-1-1-0	2	1-1-0-2-0-0-1-0	4	1-1-1-1-1-1-1

	Alerts and Warnings Issued	l
Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
No Alerts Issued		

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
08 Apr	70	8	3	22 Apr	70	8	3
09	70	15	4	23	72	5	2
10	70	8	3	24	72	5	2
11	70	5	2	25	72	5	2
12	70	5	2	26	72	5	2
13	70	5	2	27	72	5	2
14	70	5	2	28	72	5	2
15	70	5	2	29	72	5	2
16	70	5	2	30	70	8	3
17	70	5	2	01 May	70	5	2
18	70	5	2	02	70	5	2
19	70	5	2	03	70	5	2
20	70	5	2	04	70	5	2
21	70	8	3				

						Energet	ic Events			
	Т	ime		X-1	ray	Opt	ical Informatic	n	Peak	Sweep Freq
Date			¹ / ₂ Integ		Imp/	mp/ Location		Radio Flux	Intensity	
	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245 2695	II IV
No Events	s Obser	ved								
						Flar	e List			
						_			Optical	
			Tim	e			X-ray	Location	Rgn	
Date		Begin	Max		End	(Class.	Brtns	Lat CMD	
30 March	l	No Fla	res Ol	oserved	1					
31 March	1	No Fla	res Ob	oserved	1					
01 April	1	No Fla	res Ob	oserved	1					
02 April	l	No Fla	res Ob	oserved	1					
03 April	1	No Fla	res Ob	oserved	1					
04 April	1	No Fla	res Ob	oserved	1					
05 April	l	No Fla	res Ob	oserved	1					
-										

	Region Summary														
	Location		Sunspot	Character	istics		_]	Flare	s			
	Helio Area Extent Spot Mag							X-ray	/		()ptic	al		
Date	(°Lat°CMD) Lon	(10 ⁻⁶ hemi) (helio)	Class	Count	Class	С	Μ	Х	S	1	2	3	4	

No active regions.

	Sunspot Numbers Radio Flux Geomagnetic												
		Diamator	Smooth										
Marth	<u>Observed</u>	values	Katio DI/CEC	SIIIOOUI	values	<u> Penticton</u> 10.7	<u>SIIIOOth</u>	<u>Planetary</u>	SHIOOTI Value				
wonth	SEC	KI	KI/SEC	<u>SEC</u>	<u>KI</u>	10.7 cm	value	Ар	value				
A .1	6.0	07	0.54	2	007	70.4	75.0	0	0.7				
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5				
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4				
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8				
. .	1	10.0	0.44			-1.6		0					
July	15.6	10.0	0.64	11.6	7.0	/1.6	72.5	8	7.4				
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6				
Septembe	r 4.8	2.4	0.50	9.9	5.9	67.1	71.5	9	7.8				
0.1	1.0	0.0		10.0	- 1			0	-				
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9				
Novembe	r 2.5	1.7	0.68	9.4	5.7	69.7	71.1	5	7.8				
December	r 16.2	10.1	0.62	8.1	5.0	78.6	70.5	4	7.8				
				_									
				2	008								
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7				
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6				
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4				
April	4.9	2.9	0.59	5.3	3.3	70.3	69.6	9	7.1				
May	5.7	2.9	0.51	5.7	3.5	68.4	69.7	6	6.9				
June	4.2	3.1	0.74	5.2	3.2	65.9	69.2	7	6.8				
. .	1.0	o -	0.70				60 0						
July	1.0	0.5	0.50	4.5	2.7	65.8	68.8	6	6.6				
August	0.0	0.5	**	4.4	2.6	66.4	68.6	5	6.2				
Septembe	r 1.5	1.1	0.73	3.7	2.2	67.1	68.4	5	5.8				
O(1)	5.0	2.0	0.56			(0, 2)		6					
October	5.2	2.9	0.56			68.3		0					
Novembe	r 6.8	4.1	0.60			68.6		3					
December	r 1.3	0.8	0.62			69.2		2					
				2	000								
Iannory	28	15	0.54	2	009	60.8		2					
January Fohmory	2.0 2.5	1.J 1.4	0.34			70.0		5 1					
Morah	2.3	1.4	0.30			/0.0		4					
March	0.7	0.7	1.00			69.2		4					

Recent Solar Indices (preliminary) Of the observed monthly mean values

<u>NOTE</u>: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

**SWPC sunspot number was less than RI value, so a ratio could not be done.

_

Weekly Geosynchronous Satellite Environment Summary Week Beginning 30 March 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.

Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11 (W135).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^{2}) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 -. 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

Updated 2009 Apr 6

NOAA/SWPC Boulder,CO USA

SEC Prediction of Smoothed Sunspot Number

	Jan Hi/Lo	Feb Hi/Lo	Mar Hi/Lo	Apr Hi/Lo	May Hi/Lo	Jun Hi/Lo	Jul Hi/Lo	Aug Hi/Lo	Sep Hi/Lo	Oct Hi/Lo	Nov Hi/Lo	Dec Hi/Lo
2006	20	18	17	17	17	16	15	15	15	14	12	12
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	12	11	10	9	8	7	7	6	5	6	5	5
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	4	3	3	3	3	3	2	2	2	2/2	3/2	4/3
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(3)	(5)
2009	5/3	6/4	8/5	10/7	12/8	16/9	19/11	23/13	28/15	31/17	36/19	41/21
	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(15)	(15)	(15)
2010	46/24	51/26	57/29	62/32	68/34	73/37	78/40	84/43	89/45	94/48	99/51	103/53
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2011	108/56	112/59	116/61	119/63	123/66	126/68	129/70	131/72	133/74	135/76	137/78	138/79
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2012	139/81	140/82	140/84	140/85	140/86	139/87	139/88	138/88	136/89	135/89	133/90	131/90
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2013	129/90	127/90	125/90	122/90	119/89	116/89	114/89	110/88	107/87	104/86	101/86	97/85
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2014	94/84	91/83	87/81	84/80	80/79	77/78	74/76	70/75	67/73	64/72	61/70	58/69
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2015	55/67	52/65	49/64	46/62	44/60	41/59	38/57	36/55	34/54	32/52	30/50	28/49
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)

Updated 2009 Apr 6

NOAA/SWPC Boulder,CO USA

SEC Prediction of Smoothed F10.7cm Radio Flux

	Jan Hi/Lo	Feb Hi/L o	Mar Hi/Lo	Apr Hi/L o	May Hi/Lo	Jun Hi/Lo	Jul Hi/Lo	Aug Hi/Lo	Sep Hi/L o	Oct Hi/L o	Nov Hi/L o	Dec Hi/L o
2006	84	82	81	80	80	80	80	80	80	79	78	77
2000	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	77	76	76	75	74	73	72	71	71	71	71	70
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2008	` 70 ´	6 9	6 9	6 9	6 9	6 9	68	68	68	68/62	68/62	68/62
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(3)	(5)
2009	69/62	70/62	71/63	72/63	74/64	76/64	79/65	81/66	85/70	87/74	91/76	96/78
	(7)	(9)	(11)	(13)	(15)	(17)	(19)	(21)	(22)	(23)	(23)	(23)
2010	101/81	106/83	111/85	116/88	121/90	126/93	131/95	136/98	140/100	145/103	149/105	154/108
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2011	158/110	161/112	165/115	168/117	171/119	174/121	177/123	179/125	181/127	183/128	184/130	185/132
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2012	186/133	187/134	187/135	187/136	187/137	187/138	186/139	185/140	184/140	183/141	181/141	179/141
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2013	177/141	175/141	173/141	171/141	168/141	166/140	163/140	160/139	157/139	154/138	151/137	148/136
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2014	145/136	142/135	139/134	136/132	133/131	129/130	126/129	123/127	120/126	117/125	115/123	112/122
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2015	109/120	106/119	104/117	101/116	99/114	96/113	94/111	92/110	90/108	88/106	86/105	84/103
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)

